

Abstracts

Vectorial Finite-Element Method Without Any Spurious Solutions for Dielectric Waveguiding Problems Using Transverse Magnetic-Field Component

K. Hayata, M. Koshiba, M. Eguchi and M. Suzuki. "Vectorial Finite-Element Method Without Any Spurious Solutions for Dielectric Waveguiding Problems Using Transverse Magnetic-Field Component." 1986 Transactions on Microwave Theory and Techniques 34.11 (Nov. 1986 [T-MTT]): 1120-1124.

An improved finite-element method for the analysis of dielectric waveguiding problems is formulated rising the transverse magnetic-field component. In this approach, the divergence relation $\nabla \cdot \mathbf{H} = 0$ is satisfied and the spurious, nonphysical solutions which have been necessarily included in the solutions of earlier vectorial finite-element methods are completely eliminated in the whole region of a propagation diagram. To verify the accuracy of the present method, numerical results for a rectangular metallic waveguide half filled with dielectric are presented and compared with exact and earlier finite-element solutions. Dielectric rectangular waveguides are also analyzed for both isotropic and anisotropic cases.

[Return to main document.](#)